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This paper presents experimental investigations of the diffraction of plane strong 
shocks by several cones, a cylinder, and a sphere. The diffraction pattern, in 
particular the loci of Mach triple points and the shape of the diffracted shocks 
are compared with theoretical results obtained from a diffraction theory proposed 
by Whitham (1957, 1958, 1959). The agreement between theory and experiment 
is shown to be good. Also given are extensive numerical results supplementing 
Whitham’s papers, and theoretical considerations applying Whitham’s theory 
to  very blunt bodies. 

1. Introduction 
Whitham (1957, 1958, 1959) has presented an approximate theory for the 

dynamics of two- and three-dimensional shock waves. He applied this theory 
to  the description of shock diffractions on wedges and a cone of 2 8 . 8 O  semi- 
angle. The present paper presents experimental results of shock diffractions by 
several cones with different apex angles at shock Mach numbers between 3.5 and 
4.0 and compares them with numerical solutions obtained using Whitham’s 
theory. In  addition, Whitham’s theory is extended to blunt two- and three- 
dimensional bodies, in particular a cylinder and a sphere. A theory based on 
Whitham’s ideas is presented to describe the diffraction pattern near the nose 
of very blunt bodies. This theory was used to find initial values, at a distance 
sufficiently far from the nose to start a characteristics solution of Whitham’s 
equations for the sphere and the cylinder. The agreement between theory and 
experiment at  shock Mach numbers near 3.00 for certain features of the diffrac- 
tion pattern was found to be good. 

2. Experimental investigations and their results 
The experimental investigations were performed in the Harvard University 

4in. x 12in. x 40ft. shock tube in air. A Schlieren optical system using a spark 
light source of approximately 0.2psec duration was used to photograph the 
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diffraction patterns. The shock speed was measured between two Schlieren light 
screens by means of an electronic counter. The second light screen also triggered 
a variable time delay which in turn triggered the spark light source. 

Diffraction on cones 

A series of Schlieren pictures of diffractions on cones with semi-apex 
angles 0, varying between 9.7" and 44.7' was taken at  a mean shock Mach 
number of 3.68 & 0.16. Figure 1 (plate 1) gives a typical photograph from this 
series. 

The feature of the diffraction pattern predicted by Whitham's theory is the 
shape and location of the diffracted shock (Mach shock) at any time. The theory 

O W  

FIGURE 2. Shock-shock angle x ws cone semi-apex angle 8, for shock Mach number 
M ,  = 3.68. 0 Exp. points. 

does not predict the shape or location of reflected shocks. As part of the descrip- 
tion of the Mach shock, the locus of successive positions of the Mach triple point 
can be found. Whitham calls this locus a 'shock-shock', since it represents a 
(Mach) shock moving along the incident shock. 

Shock-shocks of any conical diffraction are straight lines inclined by an 
angle x (shock-shock angle) with respect to the axis of symmetry. This angle was 
determined from the photographs. Figure 2 shows x- 0, us 0, compared with 
the curve predicted by Whitham's theory for incident Mach number M, = 3.68. 
As is seen the experimental points lie below the theoretical curve. This is the same 
discrepancy as that reported by Whitham (1957) on wedges. It appears to be 
connected with the fact that this theory does not allow for the possibility of a 
regular reflexion. Instead, this theory predicts Mach reflexion for all angles 
6, up to go", although x- 0, becomes so small for 0, > 70" that one could con- 
sider it a regular reflexion for all practical purposes. 

Except for very small semi-apex angles 0, the Mach shock is predicted to 
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be almost a straight line. This is shown to be true (figure 1, plate 1) although at 
very small 8, the shock is so weak that an accurate determination from the 
Schlieren pictures was not possible. 

Diffraction on a cylinder 

The most extensive results were obtained for a cylinder of diameter D = $in. 
Each shock-tube run produced one picture of the diffraction in a certain stage 
of development. Figures 3-5 (plates 2-4) show typical examples. 

Two series of experiments were performed a t  the same mean shock Mach 
number of 2.82 but a t  two different pressures Pz behind the undisturbed shock 

and, therefore, at two different Reynolds numbers, Re = uD/v (u being the 
velocity of the undisturbed shock afterflow, D the diameter of the cylinder and 
v the kinematic viscosity behind the undisturbed shock) : 

Series I, Pz = 9.94 p.s.i., Re = 7.79 + lo4; 
Series 2, P2 = 1-08 p.s.i., Re = 0.78 + lo4. 

The diffraction was followed through about 7 diameters of travel of the incident 
shock past the cylinder. 

On a cylinder two loci of triple points appear on either side of the plane of 
symmetry of the flow, one starting at the front of the cylinder, and the other at 
the plane of symmetry behind the cylinder (figures 4 and 5, plates 3 and 4). One 
half of the symmetrical diffraction pattern is shown in figure 6, which summarizes 
the data of the two series of experiments on the cylinder, together with the pre- 
dicted shock-shocks using Whitham’s theory. 

1-2 
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When the incident shock first impinges on the cylinder a regular reflexion is 
formed since 0, > 6',,,,, the cut-off angle. Between 40" and 50" from the 
forward stagnation point Mach reflexion begins. Figure 3 (plate 2), therefore, 
shows two curved Mach shocks and the corresponding slip surfaces just before 
the Mach shocks meet at the rear end of the cylinder. Note that the slip surface 
has 'rolled up ' into a vortex (not to be mistaken for the vortices formed in vis- 
cous flow behind a cylinder). This vortex is formed in a boundary-layer shock- 
wave interaction at the time when the Mach shock is first created. The vortex 
was not observed in series 2 experiments; the low density and resulting decreased 
Schlieren sensitivity probably rendered it invisible. If the assumption is made 
that the circulation of the vortex does not change very much with time, it 
should follow aparticle path. The locus of vortex positions is also showninfigure 6. 
Whitham, calling the orthogonal trajectories of the shock positions rays, as- 
sumes that they are identical with particle paths; note that the vortex follows 
a ray closely except as it nears the plane of symmetry of the flow behind the 
cylinder. 

The interaction of the two Mach shocks as they collide behind the cylinder 
may be considered as a reflexion off a solid wall in place of the plane of symmetry. 
Here again the reflexion is at  first regular, Mach reflexion beginning between 0.5 
and 1.0 diameters behind the cylinder. This second Mach reflexion is evident in 
figures 4 and 5 (plates 3 and 4). 

In  figure 3 (plate 2) boundary-layer separation is seen to take place on the aft 
sides of the cylinder. Figures 4 and 5 (plates 3 and 4) show the flow field resulting 
from the interaction between reflected shocks and the separated boundary-layer 
material behind the cylinder during the process of wake formation. In  spite of this 
complicated flow behind the diffracted shocks, agreement between the predicted 
diffraction pattern and experiments appears to be good. Note in particular that a 
change of Reynolds number by a factor of 10 did not result in any change of the 
loci of the triple points in the diffraction pattern. 

Diffraction on a sphere 

Two series of Schlieren photographs of the diffraction on a sphere were taken in 
the same manner as for the cylinder. An English table-tennis ball of 1 in. diameter 
filled with Wood's metal and suspended in the test section from 8 nylon strings 
was used for a sphere. Having found the Reynolds number of no influence on the 
diffraction pattern, it  was kept (approximately) constant and the diffraction 
investigated at two incident shock Mach numbers H,, = 2-85 and M, = 4.41. 
Due to the larger size of the sphere the experiments cover the diffraction over a 
range of only 3.5 sphere-diameters of travel of the incident shock. The diffraction 
pattern for a sphere is qualitatively the same as for the cylinder: two pairs of 
triple-point loci appear on either side of the axis of symmetry. Figures 7 and 8 
(plates 5 and 6) show instances in the development of the diffraction (the radial 
lines are the nylon strings). The diffraction pattern behind the sphere shows a 
spherical shock penetrating the straight Mach shock (figure 8, plate 6). This 
spherical shock is the reflected shock resulting from the point collision of the 
converging cylindrical Mach shock at the rear stagnation point of the sphere. 
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Due to the small extension of the disturbed flow field normal to the direction of 
propagation, the viscous wake development as well as the slip surfaces are 
almost invisible to the Schlieren system. 

Figure 9 shows the experimentally found loci of the triple points plotted 
together with the shock-shock obtained from the theory by the method of charac- 
teristics for incident Mach numbers M, 9 1. Due to difficulties in extending the 
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FIGURE 9. DifFraction on a sphere; characteristics solution for M ,  $ 1. Exp. triple 
points: 0 M ,  = 2.85, + M,, = 4.41, @ starting of characteristic solution. 

characteristics net around the sphere to its back side, no theoretical prediction 
for the second shock-shock could be obtained. The agreement between theory 
and experiment along the first shock-shock is good. Whitham’s theory predicts 
that the diffraction pattern should be the same for incident Mach numbers 
M, 2 3. This is substantiated by the coincidence of the loci of the triple points 
found experimentally for the two incident shock Mach numbers (M, = 2.85 and 
No = 4.41) and the shock-shock predicted for M, & 1. 

3. Theoretical calculations 
Theoretical calculations cover (1) the numerical solutions of the equations 

governing conical flows (with a number of by-products, which have been tabu- 
lated for future reference); (2) a semi-graphical solution by the method of 
characteristics for the cylinder; and (3) a purely graphical solution by charac- 
teristics for the sphere. An attempt was made in the latter two cases to simplify 
the calculations as much as possible by exploiting the peculiarities of the diffrac- 
tion equations. In  order to find an initial value curve from which to start the 
characteristics solution, an approximate solution for the nose region of the 
cylinder and the sphere was developed, based on the fundamental ideas of 
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Whitham’s theory. The approximation was also extended to  cones of large 
semi-apex angles. 

Solution of the conical equations 
The equations governing conical diffractions given by Whitham (1 959, equations 
52, 53, 54) for finite incident Mach number No were solved on a high-speed 
digital computer by simultaneous integrations, starting from the shock- 
shock and calculating backwards to the cone surface. The method has been 
described by Whitham (1959). Figure 10 shows the hodograph shock-shock 
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M,, cos e W p w  
FIUURE 10. Crescent curves for oonica.1 diffractions. 
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polars which we will call ‘crescent curves ’: Mo/n2, ws 0, corresponding to one 
branch of Busemann’s ‘apple curves’ in supersonic flow (No/& = relative 
Mach number on wall, 0, = semi-apex angle) with No as a parameter. Figure 11 
gives (x - 0,) ws 0, with No as a parameter. Also shown is the curve obtained 
from the approximate theory for cones of large semi-apex angles. Finally, 
figure 12 shows the full ‘crescent curve’ for No $- 1, including the curves re- 
presenting the solutions of the conical diffraction in the hodograph plane. In  
order to make these calculations, it was necessary to determine, as functions of 
Mach number, the ray area A,  the characteristic angle m, the integral function 
analogous to  the Prandtl-Meyer function, w,  and the shock-shock jump con- 
ditions. Since these functions are not tabulated elsewhere, and appear to be of 
general interest for any further application of this theory, they are reproduced 
in table 1. 
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The respective equations are given by Whitham (1957). 
(1) Ray area, A = A(M): 

where 

A = kexp(-l 2MdM 
(M2-1)K(M) 

K ( M ) = 2  

(y - 1) M2+ 2 p2 = - - . ~- 
2yM2-(y-1)' 

and k is an arbitrary constant. As noted by Whitham this integral has an 
analytical solution which was found to be 

choosing k = 1. A =f(M) is tabulated in table 1. 
(2) The characteristic angle m = m(M) is given by 

Values for m = m ( M )  are also tabulated in table 1. 
(3) The integral w corresponding to the Prandtl-Meyer function in supersonic 

M 2 a flow is given by 

.=J1 [ (M2-1)Km] dM.  

Therefore for two-dimensional diffractions the characteristics of Whitham's 
diffraction equations are given by 

I9 k w = const. 
along curves of slope 

Values for w = w ( M )  are given in column 3 of table 1. 
(4) The shock-shock jump conditions for oblique shock-shocks are 

and 

( M ;  - &!:)a (A: - A;)t 

A, M;-M; a tan(X - 19,) = - ~ 

M,(A;-A;) ' 

tan (6, - 8,) = 
4 M l +  AOMO 
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Mach no. M 
1 
1~000001 
1~00001 
1~0001 
1.001 
1.01 
1-05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1-65 
1.70 
1.75 
1.80 
1-85 
1.90 
1.95 
2-00 
2.05 
2.10 
2.15 
2.20 
2.25 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 
3.00 
3.20 
3.40 
3.60 
3-80 
4.00 
4.50 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 
15.00 
20.00 

100*00 
03 

Ray areaA 
A x 10-n n 

3.668749 +10 
3.668672 + 8 
3.667902 + 6 
3.660213 + 4 
3.584696 + 2 
1.310728 + 1 
2.946288 + 0 
1.184152 + 0 
6.053638 - 1 
3.536658 - 1 
2.250720 - 1 
1.520662 - 1 
1-074028 - 1 
7.850741 - 2 
5.898186 - 2 
4.531934 - 2 
3.548150 - 2 
2.822580 - 2 
2,276434 - 2 
1.858064 - 2 
1.532637 - 2 
1.276079 - 2 
1.071389 - 2 
9.063299 - 3 
7.719471 - 3 
6.615861 - 3 
5.702352 - 3 
4.940726 - 3 
4.301517 - 3 
3.761766 - 3 
3.303423 - 3 
2.576553 - 3 
2.037086 - 3 
1.630023 - 3 
1.318343 - 3 
1.076566 - 3 
8.868121 - 4 
7.363072 - 4 
5.184216 - 4 
3.740925 - 4 
2.757067 - 4 
2.069662 - 4 
1.578970 - 4 
8.519558 - 5 
4.926060 - 5 
1.921342 - 5 
8.705958 - 6 
4.395269 - 6 
2.408270 - 6 
1.407051 - 6 
1.786391 - 7 
4.141420 - 8 
1.172427 -11 
0 

a, 

Characteristic 
angle m 
(degrees) 

0 
- 
- 

0.403 
1-280 
4.002 
8.544 

11.474 
13.142 
14.843 
15.958 
16.859 
17.604 
18.231 
18.766 
19.228 
19.630 
19-983 
20.295 
20-572 
20.820 
21.042 
21.242 
21.423 
21.587 
21-736 
21.872 
21.997 
22.1 11 
22.216 
22.312 
22-401 
22-560 
22-696 
22.814 
22.916 
23.006 
23.085 
23.154 
23.271 
23-364 
23-439 
23.501 
23.552 
23.647 
23-710 
23-788 
23.832 
23.859 
23.876 
23.889 
23.917 
23-926 
23.937 
23.938 

Prand tl-Meyer 
integral o 

0 
0.003 
0.009 
0.028 
0.089 
0.283 
0.633 
0.896 
1.097 
1.266 
1-414 
1.547 
1.669 
1.728 
1.887 
1.984 
2.077 
2.165 
2.249 
2.330 
2.406 
2.480 
2.551 
2.619 
2.685 
2-749 
2.811 
2.871 
2.929 
2.985 
3.040 
3.094 
3-203 
3.302 
3-388 
3.477 
3.563 
3.645 
3.724 
3.875 
4.015 
4.148 
4.272 
4.398 
4.660 
4.900 
5.314 
5.672 
5.966 
6.232 
6.470 
7.385 
8.033 

11.67 
co 

TABLE 1 



10 A.  E .  Bryson and R.  W .  P. Gross 

where index Orefers to the flow before, index 1 to the flow behind, the shock-shock, 
8, is the angle between the ray direction and the fixed co-ordinate system, and 
x is the shock-shock angle between the shock-shock and the fixed co-ordinate 
system. The relationship between 8, and M, with No as parameter (0, = 0) is 
shown in the form of hodograph shock-polars in figure 16; (x- 8,) as a function 
of 8, with X0 as parameter (8, = 0) is shown in figure 17. 

Approximate analysis of shock-shock locus on cones of large semi-apex 
angle, Mo & 1 

For large semi-apex angles it can be assumed that the Mach shock is approxi- 
mately straight (see figure 13). The velocity of point P is the same for both shocks, 

(1) 
therefore MosecX = Msec(X-8). 

FIGURE 13 

All the rays contained in the undisturbed ray tube of area A, = ~ y i  must pass 
through a ray tube of area A behind the shock-shock, where 

A = ny; sec 8(l - [ 1 - cos 8 csc x sin (x - @I2}, 
80 that 

But, for M 9 1, 

A 
- = sec O{ 1 - [ 1 - cos 8 csc x sin(x - O)]z). 
A0 

A n 

A, = (2) (n  = 5.0743), (3) 

assuming that this also holds across the shock-shock. 
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From (l) ,  (2) and (3) we obtain a relationship between 0 and x, for 8 + Bn 

In  the limit x, (4pr-19) < 1, (4) reduces to 

x-e +(in-@). 
Equation (4) has been plotted in figure 12. 

Approximate analysis of shock-shock locus on front of cylinders, Mo >> 1 

It is again assumed that the Mach shock is almost straight and radial (see 
figure 14). Here the undisturbed rays contained in a stream tube of area 
A,  = (1 + A )  sin q5 pass through the area A = h per unit length of the cylinder. 

FIGURE 14 

Mach shock and incident shock are parts of the same surface a(x, y ,  t )  at any 
instant, where (Whitham 1959) in our case 

5 1-(1+A)cosq5 a=at=-=---. 
O Mo MO 

By definition (Whitham 1959), 
MlVal = 1. 

Since the Mach shock is normal to the wall, for the cylinder, 

Remembering that 
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we find a differential equation connecting h and q5 for q5 --f 0 
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with the initial condition A = 0 at q5 = 0 since at  the nose the reflexion must be 
regular. In  the limit A, 4, (dh/dq5) < 1 we find 

The solution of equation (9) is plotted in figure 15. 
h = sin"+' q5. (10) 

FIGURE 15. Position of shock-shock as given by approximate theory for blunt 
bodies, M,, 1. 

Approximate analysis of shock-shock locus on front of sphere, H, 3 1 
The assumptions and notations are the same and equations (6), (7) and (8) hold 
also in this case, except that now 

A,  = 7ryg = n( 1 + 
A = 2n-4 1 + Qh) sin q5. 

sin2 q5, 

We obtain a differential equation analogous to (9), for $ -+ 0 

with A = O  at q5=0. 

In  the limit A, q5, (dh /d$)  all < 1 the solution can be obtained explicitly 

Very close to the nose the shock-shock 'stand off' distance on a sphere is half as 
large as on the cylinder for the same $. The numerical solution obtained for (12) 
is also given in figure 15. 

Assuming that the approximations for the positions of the shock-shock for 
cylinder and sphere are good up to q5 = 50°, we may chose a value of q5 = 45O, say, 
to  find the shock-shock angle 2, shock-shock strength (Ho/il!Il)3, and ray angle O1 

q5- (13) = lsinnfl 
2 
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behind the shock-shock, which then can serve as a starting point for a charac- 
teristics solution ( A  is so small near 4 5 O ,  the shock-shock so close to the wall, that 
one point on the shock-shock appears sufficient). 

The angle x between the shock-shock and the z-axis is found, for the cylinder 
and the sphere, from 

tanX=($) = (1  + A )  tan q5 +dh/dq5 
sB (1 + A )  -dA/dq5. tan$' 

070 

060 

050 

$ 040 
P; 
d 

'B 030 

. 
$ 

020 

010 

0 

7 40" 

'SX lo"---- \\ 

T ' I  I I I I I I 1 

Mo cos B,/M, 

FIGURE 16. Shock-shock polars. 
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81 
FIGURE 17. Shock-shock angle x v.9 dsflexion angle 8,; shock-shock jump conditions; 

Mo = incident Mach number. 
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where the origin of the x-y system is now located at the front stagnation point. 
Knowing x, (M,/M,) and 8, are found from figures 16 and 17, and m from table 1. 
These values define the starting point for a Characteristics solution in the physical 
and hodograph planes. 

Characteristics solution for cylinder 
If we neglect reflexions of the characteristics from the shock-shocks in this case, 
then the left-running characteristics are straight lines along which all flow pro- 
perties are constant. In particular, the ray angle 0 is constant between wall and 
shock-shock and equal to Owan = &r - 4. Knowing 8 = Ow, we may find (MJM,) on 
the appropriate shock-shock-polar of figure 16, and the corresponding values for 
x and m are given by figure 17 and table 1, respectively. This allows us to draw 
the left-running characteristic from any point on the wall. A t  the initial point 1 
which lies on the shock-shock with x, 8, M0/iM,, and m given this scheme is 
inverted. The point 0 on the wall from which the left-running characteristic 
through the initial point issues is obviously defined by 4 = +7r - 8. From point 
1 the shock-shock is continued with a slope tanx3, x3 = x(N3), up to a point 3 
whereit intersects the characteristic from the next wall point 2. This semi- 
graphical method of constructing the shock-shock is illustrated by figure 18. 

This procedure is continued up to 4 = in; the characteristic from this point on 
the wall meets the shock-shock at infinity, (No/Ml) = 1 and m = m, along this 
characteristic. 

The back side of the cylinder is obtained by a simple wave expansion along its 
wall. Again €J = Owall = &n - qi is known and assumed to be constant along a 
straight left-running characteristic. Then by means of the Characteristic 
equation 

w = -e, 

where 
!t 

dM,  
2 

( M 2 -  l ) K ( M )  

M and m are found from Table 1, w = 0 at M = 1 (which is in error in Whitham’s 
paper of 1957). 

When the diffraction reaches the plane of symmetry a second shock-shock is 
formed since the diffraction is again turned through a ‘compressive’ angle of 
0 < he < &r; the rays must be parallel to the plane of symmetry. All charac- 
teristics on the back side, therefore, intersect a second shock-shock. Observing 
that 8, (before the second shock-shock) is given and O2 (behind the second shock- 
shock) is equal to zero, x can be found again from the shock-shock polar diagram, 
if we use the polar on which M, = 2MWall. The second shock-shock starts at the 
rear stagnation point with x = 0,  and is constructed piece-wise in the same 
manner as the first shock-shock. 

Figure 6 shows the full characteristic field, the constructed shock-shapes and 
rays, and the experimental data. Also shown is the locus of the vortex in the slip 
surface, which should trace a particle path. The correspondence between theory 
and experiment appears to be good. 
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Characteristic solution for aphere 

For axisymmetric shock diffraction problems, viz. a sphere, the characteristic 
equations in the hodograph plane have a term containing the radius r, which 
implies that the left-running characteristics are not straight lines. Also the 
diffraction around the back side is no longer a simple wave. 

FIQURE 18 

A purely graphical method proposed by de Haller (1945) and modified to 
apply to shock diffraction problems was used. Since the experimental incident 
Mach numbers were quite high, it was assumed that Mo 9 1. In  this case the 
characteristic angle m = 23.9Obecomes constant and independent OfMachnumber. 

De Haller's method, also described in Shapiro (1954), solves the axisymmetrical 
characteristic equations in the physical and hodograph planes simultaneously 
making use of the two-dimensional hodograph characteristics, which are logarith- 
mic spirals in our case. The term in the axisymmetrical characteristics equations 
containing the radius vector is found graphically in the physical plane and 
introduced as a correction term into the hodograph plane. A simple templab 
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drawing device was made to mechanize the calculation. It was found, however, 
that the left-running characteristics in the hodograph plane became highly 
divergent on the aft portion of the sphere. A reliable solution for this part and 
the second shock-shock could, therefore, not be obtained. 

0 8  

0 6  z 
s' 
c 
* 0.4 
.3 

sj= 

0 2  

0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

M ,  cos BIM 

FIGURE 19. Hodograph plane for characteristics solution on a sphere fore-body, M,, $ 1. 
Numbers refer to successive points of the characteristic net in physical plane. 

Figure 9 shows the result of the solution for the front of the sphere starting 
from an input point on the shock-shock as described previously. The experimental 
points for two different Mach numbers are also plotted. The correspondence 
appears to be very good. Figure 19 is a reproduction of the hodograph plane 
corresponding to this part of the diffraction field. It is seen that at an azimuth 
angle q5 = 90') O,,,, = 0 and the Mach number (M,/M,) = 1, as was found for 
the cylinder. 

The experimental investigation was sponsored by the National Science 
Foundation under Grant 7008 to Harvard University, Cambridge, Mass. The 
theoretical calculations were sponsored by Douglas Aircraft Co. Inc., and per- 
formed on the Bendix G-15 computer at Douglas Aircraft Co. Inc., Missiles 
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